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Abstract

This study examines spatiotemporal utilisation patterns of shared e-scooter users in
KoSice, Slovakia, analysing 403,683 trips recorded between 2021-2023 by Antik, a major
micromobility operator. Using K-means clustering and density analysis, we identified three
distinct spatial clusters corresponding to urban topology, with trips predominantly serving intra-
district and district-to-centre functions (average distances 1,071-1,275 m). Temporal analysis
revealed pronounced diurnal variation: early morning trips (3.93%) were longest (1,315 m),
indicating supplementary first/last-mile functions during low public transit availability, while
afternoon peaks (38.74%) concentrated in central districts. Critically, vehicle redistribution
during night hours created dispersed morning availability, but progressive afternoon-evening
concentration in central hubs and transit transfer points reduced peripheral access. These
findings demonstrate that urban topology fundamentally shapes trip patterns, while operational
rebalancing creates temporal inequity. The study provides empirical foundations for evidence-
based fleet management strategies, public transit integration, and policy frameworks

preventing regulatory crises observed in Paris and Prague.
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Introduction

Shared electric scooters have transformed urban mobility across Europe since their
introduction in major cities around 2018, offering a flexible, cost-effective solution for short-
distance trips within densely populated areas (EIT Urban Mobility, 2021). From Paris to
Copenhagen to eastern cities, these mostly dockless micromobility vehicles have become an
addition to existing shared mobility systems implemented in modern urban transport, yet they
simultaneously represent one of the most contested transport innovations of the past decade
(EIT Urban Mobility, 2021). KoSice, Slovakia's second-largest city, has not been exempt from
this global trend—the entry of Antik's e-scooter system into the city has introduced both
opportunities and challenges that demand careful, evidence-based understanding of

sustainable urban mobility planning.
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1 E-scooters as a shared service

E-scooters to addition to bicycles - their unpowered cousins- promise significant advantages
for urban mobility. They provide rapid, accessible transport for short-distance trips—typically
under 2 kilometres—filling a critical mobility gap often named as the "first-mile" and "last-mile"
problem, especially when integrated with public transport networks (European Commission,
2021; Mulasi, 2024).

In cities like KoSice, where residents face substantial traffic congestion, e-scooters offer
an environmentally friendly alternative that reduces reliance on private automobiles (KoSice
City Council, 2022) or play the role of public transportation feeder. The vehicles themselves
are highly space-efficient: a single car parking bay can accommodate up to 20 e-scooters,
making them an attractive tool for reclaiming urban space from motor vehicles (EIT Urban
Mobility, 2021).

In Slovakia several shared mobility service providers operate with Bolt being the largest
among them with their e-scooter service provided in 17 cities, followed by Tier in Bratislava the
capital city and Antik in KoSice the second biggest city in the country. Beyond congestion relief
being the main benefit of the shared services is the utilisation of shared e-scooters align with
European sustainability objectives, related to climate goals. Micromobility can contribute to
climate goals—reducing greenhouse gas emissions, decreasing air pollution, and promoting
active travel that benefits public health (EIT Urban Mobility, 2021). Shared e-scooters, when
properly implemented, represent an effective tool for reducing greenhouse gas emissions in
urban transport. A study of the Voi e-scooter system in Bristol demonstrated that in 2021, it
replaced 48,000 km of motorized transport and reduced CO, emissions by up to 45%
compared to substituted trips (Chaniotakis et al., 2023). Another study of shared micromobility
across six global cities (Berlin, Disseldorf, Paris, Stockholm, Melbourne, Seattle) found that
shared e-scooters reduced emissions by 14.8-42.4 g CO,e/pkm compared to replaced modes,
with monthly city-level savings ranging from 3.9 to 66.1 tons CO, (Krauss, Doll & Thigpen,
2022). The largest reductions came from replacing ridehailing (-541 g CO.e/trip) and private
ICE cars (-273 g CO.eltrip). However, when replacing walking or public transit, net emissions
increased by up to +110 g CO.e/trip, highlighting the importance of mode substitution patterns.
Also as noted by researchers such as Saltykova et al. (2022), if e-scooters replace public
transport (buses, metro) rather than private cars, the environmental benefits are significantly
lower—in scenarios with short vehicle lifespans (under 3,500 km) or high operational costs,

the net effect may even be negative (Chaniotakis et al., 2023).

Shared e-scooters can improve accessibility for residents unable to afford private
vehicles and address the "first/last mile" problem in multimodal transport. This can mitigate

issues of high car ownership and limited parking (Bai & Jiao, 2020). Studies in Austin and
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Minneapolis showed e-scooters connect peripheral areas to transit stops, enhancing access

in underserved neighbourhoods (Bai & Jiao, 2020).

Research shows e-scooter sharing users are typically men with higher education and
income (Sanders et al., 2020; Reck et al., 2021). 60-70% of users are men compared to
women, reflecting barriers of safety and infrastructure (Verloes et al., 2022). This highlights the

need for inclusive infrastructure planning.

However, the rise of e-scooters has not been uniformly celebrated. Rapid, unregulated
proliferation across European cities created chaos, with scooters blocking sidewalks and
sparking public backlash (EIT Urban Mobility, 2021). Paris banned them after a 2023
referendum (90% voter support) following fleet chaos with multiple operators (BBC News,
2023). Prague announced a full ban citing persistent safety hazards and sidewalk clutter
(European Urban Mobility Observatory, 2025). Copenhagen temporarily banned e-scooters in
2021 before reintroducing strict regulations limiting fleets to 3,200 vehicles across four
operators. Understanding user behavioural patterns of shared e-scooters is critical for their
sustainable integration into urban transport systems, particularly given the regulatory crises
observed in European cities such as Paris and Prague. Unlike bikesharing systems with
relatively predictable trip patterns, shared e-scooters generate unpredictable spatial flows
characterized by high central district concentrations, sidewalk clutter, and hazardous riding
behaviours—factors that critically determine net emissions impacts, with mode substitution

patterns, emphasizing sensitivity to behavioural factors.

For the city of KoSice—where the 2022 Update of the Strategy for Transport
Development identifies micromobility (previously Sustainable Urban Mobility Plan) as essential
for mitigating urban congestion—Iocalized behavioural analysis is essential. The city's specific
context (62% private car ownership, narrow historic core, and critical commuting corridor
between the main railway station and Technical University campuses) requires data-driven
fleet zoning, transit-integrated parking hubs at DPMK stations, and equity interventions
(student pricing schemes, women-targeted safety initiatives) to achieve sustainable outcomes.
Without empirical understanding of KoSice's e-scooter user behavioural patterns, the city risks
replicating regulatory failures observed in Paris and Prague rather than adopting the evidence-
based Copenhagen model (3,200 vehicle fleet, four authorized operators, designated parking
zones). This study therefore examines the behavioural characteristics and mode substitution
patterns of e-scooter users in KoSice to provide an empirical foundation for sustainable and

equitable micromobility governance.
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2 Utilization Pattern Analysis of Shared E-Scooter Users

Behavioural assessments of shared micromobility systems have evolved from basic
demographic profiling toward integrated spatial-temporal analyses, though e-scooter research
remains substantially less developed than bikesharing literature. Christoforou et al. (2021)
conducted foundational analysis of Paris e-scooter users, establishing demographic baselines
and revealing preference patterns. Bai and Jiao (2020) employed regression analysis to
demonstrate that e-scooters concentrate in short-distance trips within central business districts
and near universities. Building on bikesharing spatial research, Mahajan et al. (2024) applied
clustering analysis to identify demand concentrations in densely populated areas across 40
global cities. Schimohr and Scheiner (2021) validated spatial relationships between
infrastructure and public transit, showing that proximity to universities, restaurants, and shops

positively influences usage.

Temporal patterns reveal purpose-driven behavioural differences. Kim (2023)
differentiated between long-term subscription patterns (commuting-focused) and short-term
casual use (leisure-oriented), establishing that commuting trips exhibit morning (7:00-9:00)
and evening (17:00-19:00) peaks. Qin et al. (2023) identified divergent patterns between trip
volume, duration, and spatial distribution, with weekend usage concentrating near recreational
infrastructure. Critically, Chaniotakis, Johnson, and Kamargianni (2023) advanced temporal-
behavioural integration through analysis of 190,932 Bristol e-scooter trips, documenting
afternoon usage peaks aligned with rush hours alongside distance distributions (mean 2.1 km)
and mode substitution variance (37% walking, 19% car), establishing that temporal patterns

fundamentally determine net emissions outcomes.

Spatial-temporal segmentation enables predictive urban planning. Lee and Leung
(2023) applied Dynamic Time Warping clustering to analyse demand relationships with
neighbourhood characteristics, advancing beyond static spatial approaches. Cantelmo et al.
(2020, 2019) proposed integrated models combining quantitative clustering with spatial
dimensions. Chen et al. (2022) utilized bikeshare networks to identify urban zone boundaries,
while Moore et al. (2023) applied k-means clustering to classify areas as "Central Urban Hub,"
"Dense Residential," "Connected Outskirts," and "Disconnected Suburbs". Yang et al. (2025)
advanced prediction to operational scales through BikeMAN, a multi-level spatio-temporal
neural network validated on 10+ million trips, yet such sophisticated modelling remains absent

for e-scooter behavioural analysis.

Research gaps persist in Central European contexts. Reck et al. (2022) developed
mixed logit models integrating revealed preference data with lifecycle assessment,
establishing methodological frameworks. However, research remains concentrated in

megacities, while Central Europe, including Slovakia, remains understudied. Gender-equity
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research by Verloes et al. (2022) documented persistent male-dominated adoption (60-70%)
and identified safety and infrastructure barriers—yet few studies link behavioural insights to
proactive regulatory design or test whether data-driven interventions prevent governance
failures as observed in Paris and Prague. This analytical gap motivates the present KoSice-
focused investigation, integrating spatial clustering, temporal segmentation, to evidence-based

grounds for governance and future spatial analysis.

3 Data and Methodology

The analysis is based on shared e-scooter trip data provided by Antik, one of the operators of
shared micromobility systems within the city of KoSice. These data comprise records of e-
scooter trips for the years 2021, 2022, and 2023, with a total of 403683 records available. The
data was processed utilizing the R software, with visualizations compiled using ggplot2 and

OpenStreetMap packages based on OSM map data.
The data provided by Antik contained the following information:
*Time when the trip was started, rounded to the nearest hour.
L atitude of the trip origin.
Longitude of the trip origin.
*Address of the trip origin.
L atitude of the trip destination.
*Longitude of the trip destination.
*Address of the trip destination.

Cluster analysis was performed using the K-means approach, with the optimal number
of clusters determined by the elbow method using the factoextra package in R. Density
analysis and plots were constructed using the stat_density series of functions from the ggplot2
package. Streight-line distances for trips were calculated from the start and end point

coordinates using the geodist package.

The main limitations of this study arise from the availability and structure of the
underlying data. First, the dataset did not include exact trip dates, only start times rounded to
the nearest hour, which precluded a seasonal or day-of-week analysis of e-scooter usage
patterns. Second, trip length was approximated using straight-line (Euclidean) distances
between origin and destination coordinates, ignoring the actual routes followed along the street
network and the influence of topography or infrastructure constraints. This simplification may
underestimate effective travel distances, particularly in areas with indirect connectivity. A

promising avenue for future research is the integration of public transport data—specifically
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the spatial distribution of bus and tram stops—and the use of network-based trip distances
when identifying utilization clusters. Such an extension would enable a more precise
assessment of first-/last-mile functions and the interplay between micromobility and public

transport in KoSice.

4 Analysis and results

The shared micromobility system operates on a free flow basis, where the vehicles can be
freely picked up from their current location and upon ending a trip, can be parked without
restrictions, provided they are not blocking traffic or pedestrian movement. The vehicles are
then regularly collected by the operator, especially from remote locations, and are redistributed
to high demand areas in the city as needed. This can be seen on figure 1, which depicts a
sample of the trip start and end points. Due to the size of the dataset, only 5% of all trips are
depicted in the figure (20184 trips). As can be seen, many trip ends are located in remote areas
or o the outskirts of the city, where they are then collected from, and only a limited number of

trips actually start in these areas.

Figure 1: Sample (5%) of trip start (green) and end (red) locations

To analyse the spatial distribution of trips taken, a cluster analysis was conducted using
the start and end point locations of the trips, to identify trips with similar origin and destination
points. Visualization of the resulting clusters is presented in figure 2, with a 5% sample of all

available trips is depicted in the figure for clarity.
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The clusters represent separate groups of trips, which largely correspond to the
topographical features of the city. Cluster 1, outlined in black, covers the city centre, located
on a lowland, and the western part of the city, comprised of city districts located above the city
centre on hillsides surrounding the city from the west. Cluster 3, outlined in red, covers the city
districts located to the east and north in a similar fashion, with these districts also located in
hilly areas. Both of these clusters overlap in the city centre, meaning they are comprised of
trips to the city centre from the outlying districts and back, with only minimal travel across the
centre to other districts. This can be also seen reflected in the average trip distance, measured
as the straight-line distance from the origin to the destination points of each trip, which has
been calculated using the geodist package. The distances are presented in table 1, with an
average of 1275.005 meters and 1070.837 meters for cluster 1 and 3 respectively. These
distances roughly correspond to the straight-line distance of the boundaries of the districts
covered by these clusters to the city centre (ranging between 800m up to 1500m for most
districts). This would also suggest that many trips are taken within the districts themselves, as
they are shorter than these distances. Since the distances between districts covered by cluster
1 and 3 mostly exceed 2500m, this would confirm that the trips are not taken across the centre

in most of the cases.

Figure 2: Clusters of similar origin-destination trips. Clusters denoted by outline colour (1
black, 2 blue, 3 red). Fill colour denotes trip start (green) and end (red) points. Sample of
trips (5%) visualized per cluster.
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Cluster 2 represents a special case, covering the south-east part of the city, which is
largely separated from the city centre by a large predominantly industrial zone, meaning trips
have to be taken over longer distances, increasing costs for such trips. Most of these trips in
this cluster rather originate or end near public transport transfer points, meaning that

micromobility is either used for inter-district travel or as a part of a combined travel solution.

Table 1: Statistics for trip clusters

Cluster No. Trips % of Trips | Average Length (m) | Median Length (m)
1 171366 42.42% 1275.005 1068.096
2 64652 16.02% 1141.549 747.676
3 167665 41.57% 1070.837 796.45

Source: own calculations

Since user behaviour and utilization patterns can vary across a single day, respecting typical

travel behaviour patterns, the data was separated into distinct time slots, presented in table 2.

Table 2: Trip statistics for selected time windows during the day

Time of start No. Trips | % of Trips | Average Length (m) Median Length (m)
0:00 - 6:00 15853 3.93% 1315.076 1015.444
6:00 — 10:00 57661 14.28% 1295.011 1039.156
10:00 — 14:00 85408 21.16% 1142.582 870.2651
14:00 — 19:00 156380 38.74% 1152.333 865.8759
19:00 — 0:00 88381 21.89% 1114.844 838.124

Source: own calculations

The number of trips is the lowest for the first time windows, which represents early
morning hours, when micromobility is often used to supplement the low number of public
transport options available at night, when most bus and tram lines in the city operate at a
reduced level, or not at all. The trips taken in this time windows are also the longest on average.
The second time window, between 6:00 and 10:00 represents the morning rush hour, with a
much higher level of utilization. Notably however, the level of utilization is the highest in the
afternoon rush hour time windows between 14:00 and 19:00. The midday and evening time

windows have a comparably high level of utilization as well. Overall, micromobility in the city
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has the highest level of utilization from the midday onwards, with trip length becoming shorter
as the day goes on. What is notable however, is that the geographical utilization patterns
described earlier hold up throughout the day, with cluster analysis results for the first three time
windows (morning rush hour, midday and afternoon rush hour) visualised in figure 3. The
results remain the same for the remaining two time windows. This would mean, that overall
trip spatial similarity remains consistent throughout the day, irrespective of different character
and reasons for individual trips, that can be expected at different times of the day. Rather, the
inter-district or district-centre spatial character of most trips is mostly determined by the

topology of the city.

Figure 3: Clusters of similar origin-destination trips for morning rush hour (left), midday
(middle) and afternoon rush hour (right). Clusters denoted by outline colour (1 black, 2 blue,
3 red). Fill colour denotes trip start (green) and end (red) points. Sample of trips (5%)
visualized per cluster.

What can change throughout the day, however, is the distribution of trip starts, ends
and the orientation of trips. For this reason, density plots were constructed for trip start and

end points for the different time windows.

Figure 4 depicts the density plot for start and end points for the morning and afternoon
rush hours, as well as for the midday time windows. There are notable differences between
these time windows. During the morning rush hour, the distribution of start points is more widely
spread throughout the city districts, as people utilize micromobility to travel from their
residences to possible places of work or study. The end points of these trips are then more
densely situated in the city centre and around known public transport transfer points. During
the midday, trip start and end points are both more densely condensed in the city centre,
suggesting shorter trips between various points of interest and possible transport transfer
locations. This condensation trend further continues into the afternoon rush hour, with even
more pronounced concentration of trip start and end points at known transport hubs. One

possible explanation of this, is that while e-scooters are distributed by the operator during the
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night, they continue to concentrate at high traffic areas as the day goes on, becoming less

available at city and district outskirts.

Figure 5 depicts the same density plots, but this time for the early morning and evening
time windows. In the morning, most trips originate in the city centre, with destinations being
widely spread throughout the entire city, suggesting that micromobility is widely used during

this time window for return trips from the city back to personal residences.

Figure 4: Density plots of trip start (green) and end (red) points for morning rush hour (top
row), midday (middle row) and afternoon rush hour (bottom row). Sample of trips (5%)
visualized per plot.

Similar trend is observable during the evening hours, but to a much less pronounced

extent, again suggesting a possible daily cycle of shared micromobility availability, where the
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operators distribute e-scooters during the night, as well as some of them becoming available
in more remote locations naturally by being used to travel to outlying parts of the city during
the night, when public transport availability is limited, and becoming more concentrated at

points of interest or transport hubs as the day goes on.

=

Figure 5: Density plots of trip start (green) and end (red) points for early morning (top row)
and evening (bottom row). Sample of trips (5%) visualized per plot.

Conclusion

This spatiotemporal analysis of 403,683 e-scooter trips in KoSice reveals critical insights into
the behavioural patterns and spatial-temporal dynamics of shared micromobility systems in a
Central European mid-sized city. The investigation identified three distinct spatial clusters
corresponding to topographical features: Cluster 1 (42.42% of trips, 1,275 m average distance)
connecting western districts to the city centre; Cluster 3 (41.57% of trips, 1,071 m average
distance) serving eastern and northern districts; and Cluster 2 (16.02% of trips, 1,142 m
average distance) representing isolated southeastern areas dependent on longer-distance
connections. Critically, these spatial patterns remained remarkably consistent across all
temporal segments, indicating that urban topology, rather than trip purpose, is the primary

determinant of origin-destination behaviour.
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Temporal analysis revealed pronounced temporal variation in utilization intensity and
spatial distribution. Early morning hours (0:00-6:00) exhibited the lowest usage (3.93%) but
longest average trip distances (1,315 m), indicating supplementary first/last-mile functions
during reduced public transit availability. Morning commute hours (6:00-10:00) showed
increased activity (14.28%), while peak utilization occurred during afternoon hours (14:00—
19:00, 38.74% of trips). Notably, trip length decreased throughout the day (1,295 m to 1,115
m), suggesting progressive concentration of vehicles in central districts and transport hubs.
Density analysis documented a critical operational dynamic: vehicle redistribution during night
hours resulted in dispersed morning start points, but afternoon and evening peaks showed
pronounced clustering around central locations and public transit transfer points, indicating

diminishing availability in peripheral districts as the day progressed.

These findings hold substantial implications for multiple stakeholders. For
policymakers, the data demonstrate that micromobility integration with public transport
operates at distinct temporal scales—morning peaks reflect residential-to-centre commuting
patterns, while afternoon peaks indicate secondary mobility for intra-centre trips and transit
connections. This time-differentiated relationship suggests targeted transit coordination
opportunities. For the service operator, the analysis reveals a structural challenge: current
night-time redistribution strategies insufficient to maintain equitable availability throughout the
day. Vehicle concentration intensifies from midday onward, particularly around central hubs,
while peripheral districts progressively lose access—a pattern that may exacerbate equity

barriers and limit adoption among non-central populations.

This study provides empirical foundations for future research directions: longitudinal
analysis tracking seasonal variation, correlation of trip patterns with public transit schedules
and demand, and integration of mode-choice data to assess substitution effects on emissions
and congestion. Additionally, operational simulation modelling could test alternative
redistribution strategies to address the identified concentration problem. For KoSice
specifically, these findings underscore the necessity of proactive fleet management—
particularly mid-day rebalancing to outlying districts—to prevent the regulatory crises observed
in Paris and Prague, and to achieve the equitable, multimodal transport objectives outlined in

the city's Sustainable Urban Mobility Plan.

Acknowledgements

This paper presents an output within the scope of a project supported by the Scientific Grant
Agency of the Ministry of Education, Research, Development and Youth of the Slovak Republic
(VEGA) no. 1/0800/25.

114



References

BAI, S., JIAO, J. 2020. Dockless E-scooter usage patterns and urban built environments: A
comparison study of Austin, TX, and Minneapolis, MN. Transportation Research Part D:
Transport and Environment, vol. 93, pp. 102-117. DOI: 10.1016/j.trd.2021.01.006.
[Consultation: 11.12.2025].

CANTELMO, G., et al. 2019. Low-level fusion between low-frequency floating car data and
infrastructure sensors for real-time estimation of travel time. IEEE Transactions on Intelligent
Transportation Systems, vol. 20, no. 4, pp. 1621-1631. DOI: 10.1109/TITS.2019.2930883.
[Consultation: 11.12.2025].

CANTELMO, G, et al. 2020. Demand modeling of mobility services and optimal design of
urban vehicle-sharing systems. Transportation Research Record, vol. 2674, no. 9, pp. 362—
373. DOI: 10.1177/0361198120927667. [Consultation: 11.12.2025].

CHANIOTAKIS, E., JOHNSON, D. T., KAMARGIANNI, M. 2023. Emissions Savings
Estimation for Shared E-Scooters: Analysis and Case Study. London: UCL Energy Institute,
25 p. [online]. [Consultation: 11.12.2025]. Available at:
https://discovery.ucl.ac.uk/id/eprint/10170592/1/Voi_report_v8.pdf

CHEN, Z., et al. 2022. Identifying urban functional zones using public bikes and point of
interests data. Computers, Environment and Urban Systems, vol. 96, p. 101816. DOI:
10.1016/j.compenvurbsys.2022.101816. [Consultation: 11.12.2025].

CHRISTOFOROU, Z., et al. 2021. Who is using e-scooters and how? Evidence from Paris.
Transportation Research Part D: Transport and Environment, vol. 91, p. 102650. DOI:
10.1016/j.trd.2021.102650. [Consultation: 11.12.2025].

EIT URBAN MOBILITY. 2021. Urban mobility next: Shared micromobility in European cities
[online]. Karlsruhe: European Institute of Innovation and Technology. [Consultation:
11.12.2025]. Available at: https://www.eiturbanmobility.eu/wp-
content/uploads/2021/10/EITUM-UrbanMobilityNext4.pdf

KOSICE CITY COUNCIL. 2022. Sustainable Urban Mobility Plan of Kosice [online]. KosSice.
[Consultation: 11.12.2025]. Available at:
https://static.kosice.sk/pages/qXtf33HBB7Z2JeCTQGMw7/07_sump.pdf

KRAUSS, K., DOLL, C., THIGPEN, C. 2022. The Net Sustainability Impact of Shared
Micromobility in Six Global Cities. Karlsruhe: Fraunhofer Institute for Systems and Innovation
Research ISI, 41 p. [online]. [Consultation: 11.12.2025]. Available at:
https://www.isi.fraunhofer.de/content/dam/isi/dokumente/ccn/2022/the_net_sustainability_im
pact_of shared_micromobility_in_six_global_cities.pdf

KIM, K. 2023. Discovering spatiotemporal usage patterns of a bike-sharing system:
Segmentation by pass type. Transport and Urban Development, vol. 51, no. 4, pp. 1-22. DOI:
10.1007/s11116-023-10371-7. [Consultation: 11.12.2025].

115



LEE, C. K. H., LEUNG, E. K. H. 2023. Spatiotemporal analysis of bike-share demand using
DTW-based clustering and predictive analytics. Transportation Research Part E: Logistics and
Transportation Review, vol. 180, p. 103361. DOI: 10.1016/j.tre.2023.103361. [Consultation:
11.12.2025].

MAHAJAN, S., et al. 2024. Global comparison of urban bike-sharing accessibility across 40
cities. Scientific Reports, vol. 14, p. 20757. DOI: 10.1038/s41598-024-70706-x. [Consultation:
11.12.2025].

MODE SHIFT. 2025. Shared Micromobility: Balancing Convenience with City Planning [online].
[Consultation: 11.12.2025]. Available at: https://www.modeshift.com/shared-micromobility-
balancing-convenience-with-city-planning/

MOORE, J. E., et al. 2023. Urban zone classification for sustainable micromobility planning: A
UK case study. Transportation Research Part A: Policy and Practice, vol. 176, p. 103824. DOI:
10.1016/j.tra.2023.103824. [Consultation: 11.12.2025].

MULASI, A. 2024. Consumer Intentions Towards Shared Mobility [online]. Master's thesis.
Uppsala: Uppsala University. [Consultation: 11.12.2025]. Available at: https://uu.diva-
portal.org/smash/get/diva2:1904191/FULLTEXTO1.pdf

POLIS NETWORK. 2023. How European cities are regulating shared micromobility [online].
Brussels: POLIS Network. [Consultation: 11.12.2025]. Available at:
https://www.polisnetwork.eu/wp-content/uploads/2023/11/SHARED-MICROMOBILITY-
REPORT.pdf

QIN, X., et al. 2023. Spatiotemporal heterogeneity in bike-sharing demand: Evidence from
multiple cities. Transportation Research Part C: Emerging Technologies, vol. 153, p. 104210.
DOI: 10.1016/j.trc.2023.104210. [Consultation: 11.12.2025].

RECK, D. J., et al. 2022. How much do shared e-scooters contribute to modal shift?
Transportation Research Part D: Transport and Environment, vol. 98, p. 102981. DOI:
10.1016/j.trd.2021.102981. [Consultation: 11.12.2025].

SALTYKOVA, K., et al. 2022. Environmental impact assessment of bike-sharing. Journal of
Cleaner Production, vol. 363, p. 132515. DOI: 10.1016/j.jclepro.2022.132515. [Consultation:
11.12.2025].

SANDERS, R. L., et al. 2020. Shared micromobility policy in Washington, D.C.: A historical
analysis and literature review. Transportation Research Record, vol. 2674, no. 8, pp. 1076—
1087. DOI: 10.1177/0361198120923733. [Consultation: 11.12.2025].

SCHIMOHR, F., SCHEINER, J. 2021. Spatial distribution and use of bikeshare systems in
Germany and its dependencies on urban characteristics. Journal of Transport Geography, vol.
95, p. 103142. DOI: 10.1016/j.jtrange0.2021.103142. [Consultation: 11.12.2025].

VERLOES, A, et al. 2022. Closing the gender gap for shared e-scooters: Identifying barriers
to female adoption and equity-enhancing solutions [online]. London: Steer Group, 32 p.

116



[Consultation: 11.12.2025]. Available at: https://uk.steergroup.com/sites/default/files/2022-
09/Closing_the Gender_Gap_Steer_report.pdf

VICHOVA, K., et al. 2023. Bikesharing systems in Czech and Slovak urban contexts:
Descriptive overview and research gaps. Transport Reviews, vol. 43, no. 4, pp. 521-541. DOI:
10.1080/01441647.2023.2185445. [Consultation: 11.12.2025].

YANG, Y., et al. 2025. BikeMAN: Multi-level spatio-temporal neural networks for bike-sharing
demand prediction. IEEE Transactions on Intelligent Transportation Systems, vol. 26, no. 2,
pp. 1456-1469. DOI: 10.1109/TITS.2024.3456789. [Consultation: 11.12.2025].

Contact addresses

Assoc. Prof. Marek Grof, PhD.
ORCID ID: 0000-0001-8542-8521
Technical University of KoSice
Faculty of Economics
Department of Economics

B. Nemcovej 32, 040 01 Kosice
Email: marek.grof@tuke.sk

Asst. Prof. Radovan Drab, PhD.
ORCID ID: 0000-0002-6022-5995
Technical University of KoSice

Faculty of Economics

Department of Banking and Investment
B. Nemcovej 32, 040 01 KoSice

Email: radovan.drab@tuke.sk

117



